配备MECHATROLINK-II接口的CJ系列运动控制单元

CJ1W-MCH71

提高设备设计效率并缩短加工时间

- 通过一个支持MECHATROLINK-II*的位置控制单元,对运动网络中多达 16轴的伺服器进行控制
- ***** MECHATROLINK II是MECHATROLINK成员协会的注册商标。



CJ1W-MCH71

特点

- 使用并发性卓越的MECHATROLINK-II伺服通信,可以减少布线并且进行高精度运动控制。
- 许多同步控制指令和轴控制指令可用来帮助现有的同步控制应用,缩短运动控制加工时间。
- 支持程序控制指令 (例如,分发指令)和各种算术运算以最大程度地提高运动编程效率。

系统配置

注: OMNUC G5系列和G系列不能与CJ1W-MCH71连接。

国际标准

- •标准缩写如下: U: UL, U1: UL (危险区域的类别I子类2产品), C: CSA, UC: cULus, UC1: cULus (危险区域的类别I子类2产品), CU: cUL, N: NK, L: Lloyd, CE: EC指令。
- 有关这些标准的详细信息和适用条件,请联系欧姆龙代表处。

CJ系列

单元类型	产品名称	规格	分配的	电流消耗(A)		- 型号	标准
平兀矢型	厂阳石柳	79C119	单元号数	5V	24V	空写	₹小/庄
CJ1 CPU 总线单元	配备MECHATROLINK-II 接口的运动控制单元	控制模式: MECHATROLINK-II的位置、速度或转矩控制 控制轴: 32个轴以下(30个物理轴,2个虚拟轴) 内部编程语言:特殊运动控制语言	1	0.60	_	CJ1W-MCH71	UC1、CE

注: 本单元无法与设备自动化控制器NJ系列一起使用。

● 支持软件

产品名称	规格	许可证数	媒体	型号	标准
FA整合工具 包CX-One Ver.4.□	CX-One是一个集成了欧姆龙PLC和组件用支持软件的综合软件包。CX-One可在以下操作系统上运行。操作系统: Windows XP(Service Pack 3或更高版本,32位版本)/Windows Vista(32位/64位版本)/Windows 7(32位/64位版本)/Windows 8(32位/64位版本)/Windows 8(32位/64位版本)/Windows 8.1(32位/64位版本)	1个许可证 * 1	DVD *2	CXONE-AL01D-V4	_
CAM数据创建工具	Windows 98SE/Me/NT4.0(Service Pack6a)/ 2000 (Service Pack 3a或更高版本)或XP		CD	WS02-MOPC2	_

^{*1.} CX-One可提供多个许可证 (3、10、30或50个许可证)。

● MECHATROLINK相关设备和电缆 (由Yaskawa Corporation制造)

名称		欧姆龙型号	Yaskawa型号
DC24V I/O模块	输入: 64 输出: 64	_	JEPMC-IO2310-E
计数器模块	反转计数器2CH	_	JEPMC-PL2900-E
脉冲输出模块	脉冲定位2CH	_	JEPMC-PL2910-E
	0.5m	FNY-W6003-A5	JEPMC-W6003-A5
	1.0m	FNY-W6003-01	JEPMC-W6003-01
	3.0m	FNY-W6003-03	JEPMC-W6003-03
MECHATROLINK-II电缆 (两端有环芯和USB连接器)	5.0m	FNY-W6003-05	JEPMC-W6003-05
(四河) 自己中心中1000人已安排了	10.0m	FNY-W6003-10	JEPMC-W6003-10
	20.0m	FNY-W6003-20	JEPMC-W6003-20
	30.0m	FNY-W6003-30	JEPMC-W6003-30
MECHATROLINK-II终端电阻	终端电阻	FNY-W6022	JEPMC-W6022
MECHATROLINK-II中继机	通信中继机	_	JEPMC-REP2000-E

注:MECHATROLINK相关设备和电缆Yaskawa Corporation制造,但是可以直接使用欧姆龙型号直接订购。(可以从欧姆龙订购Yaskawa品牌的产品。)

● 附件

无

可安装装置

型 号	NJ系统		CJ系统(CJ1、CJ2)		CP1H系统	NSJ系统	
坐写	CPU装置	扩展装置	CPU装置	扩展底座	CP1H PLC	NSJ控制器	扩展底座
CJ1W-MCH71	不适	支持		多可安装12个单元 元/装置)	2个单元*	不支持	10个单元

^{*} 需要CP1W-EXT01 CJ单元适配器。

^{*2.} CX-One也可以以CD形式提供(CXONE-AL□□C-V4)。

● 一般规格

项目	规格			
型号	CJ1W-MCH71			
电源电压	DCSV (底座)			
电 線电压	DC24V (外部电源)			
电源波动公差	DC4.5~5.5V (底座)			
电脉放列公差	DC21.6~26.4V (外部电源)			
内部电流消耗	DC5V,0.6A以下			
质量 (不包括连接器)	210g以下			
安全标准	UL、CSA、C-TICK和EC指令。			
外形尺寸(mm)	90 (高) ×79.8 (宽) ×65 (厚) (単个)			
高度	2,000m以下提升。			

以上所示规格以外的其他规格符合CJ系列的一般规格。

● 功能和性能规格

	项目	规格				
适用的 PLC		CPU 单元版本 Ver 2.0 或以上版本的 CJ 系列 PLC				
单元类型		CPU 总线单元				
安装		CPU 单元或扩展装置				
单元数		一个 CJIW-MCH71 运动控制单元需要三个标准单元的空间。				
CPU 单元的数据传	CPU 总线单元的 CIO 区	占用 1 个单元的区域 (25 字)				
送方式		对于单元和任务: 11 ~ 25 字 (取决于运动任务的数量)				
	CPU 总线单元的 DM 区	占用 1 个单元的区域 (100 字)				
	0. 0 /B/AXT-70H7 2 E	对于单元和任务: 32 ~ 74 字 (取决于运动任务的数量)				
	自定义位区	对于轴: 0 ~ 64 字 (取决于使用的轴的最大数)				
	自定义数据区	对于轴: 0 ~ 128 字 (取决于使用的轴的最大数)				
	自定义数据区	对于一般 I/O: 0 ~ 1289 字 (取决于设置)				
\$\$ abo AA2/L &r	日化人数据区					
兼容的设备						
		最多 30 个节点				
		* 当 MECHATROLINK-II 设备连接的节点数最多 16 个 (30m 内) 或 15 个 (50m 内) 时,不需要使用中继器单元。 MECHATROLINK-II 设备连接的节点数超过以上描述的情况时需要使用中继器单元。				
内置程序语言		特殊运动控制语言				
控制	控制方式	MECHATROLINK-II				
		• 位置指令、速度指令、扭矩指令				
	控制的轴数	32 个轴以下 物理轴 / 虚拟轴: 30 个轴以下 (可以是物理轴也可以是虚拟轴) 虚拟轴专用: 2 轴				
操作模式	+	运行模式、CPU 模式、工具模式 / 系统 (取决于工具)				
自动 / 手动模式		自动模式: 执行 MC 单元控制运动的内置程序。				
		手动模式: 执行 CPU 单元 (PC 接口区域) 控制运动指令。				
		注: 自动或手动模式通过CPU单元的PC接口区域设定。				
控制单元	最小设定单位	1, 0.1, 0.01, 0.001, 0.0001				
	单位	mm、inch、deg、pulse				
最大位置指令值		-2147483647 ~ 2147483647 脉冲 (已签署的 32 位) 不可能为无限制的轴进给模式。 示例:对于 16 位编码器 (65536pulse/rev),最小设定单元: 0.001mm,10 mm/rev,位置指令值的范围为 -327679999 ~ 327679999 指令单位。				
基于 CPU 单元指令	伺服锁定/解锁	执行伺服驱动器锁定或解锁				
的控制操作	点动	通过在系统参数 x 超驰中设定速度,对每个轴独立执行连续的进给。				
	STEP 操作	对指定的轴进给指定的距离。				
	原点检索	通过系统参数中设定的检索方法,定义设备原点。				
	强制原点	将当前位置强制设定为0,以将其设为原点。				
	绝对原点设置	使用绝对编码器时设定原点。 偏差值: 已签署 32 位 (脉冲)				
	偏差计数器复位	将偏差计数器强制复位为 0。				
	当前位置预设	将当前位置设定为用户定义的值。				
	设备锁定	禁止将运动指令输出到轴。				
	单块	执行运动程序时一次一个块。				
	自动 / 手动变更	在自动模式和手动模式之间进行切换。				

	项目	规格					
根据运动程序控制 操作	定位 (PTP)	以系统参数中设定的速度,针对每个轴单独执行定位。 同步规格:每块最多 8 个轴 同步执行:每个单元最多 32 个块					
	直线插补	以指定的插补速度,对于最多8个轴同步执行直线插补。 同步规格:每块最多8个轴 同步执行:每个系统最多32个块					
	圆弧插补	以指定的插补速度,对于 2 个轴执行顺时针或逆时针圆弧插补。 同步规格:每个块 2 或 3 个轴 同步执行:每个系统最多 16 个块					
	原点检索	通过系统参数中设定的检索方法,定义设备原点。 在原点检索后,可以指定位置的偏差。 绝对编码器也可以执行原点检索。					
	中断进给	通过向伺服驱动器进行输入,将指定的轴移动指定的距离来执行定位。					
	指定时间的定位	以指定的时间执行定位。					
	贯通功能	对两个指定的轴执行卷绕操作 (贯通控制)。					
	电子凸轮、单个轴	根据指定凸轮的表数据,并参考所花费的时间,执行凸轮操作。					
	同步电子凸轮	根据指定凸轮的表数据,并参考指定轴的位置,执行凸轮操作。					
	链接操作	根据设定条件,并参考指定轴的位置,执行链接操作。					
	电子轴	以按指定轴和齿轮比计算出来的速度,执行同步操作。					
	尾随不同操作	参考指定轴的位置,执行尾随和同步操作。					
	速度指令	向指定的轴输出速度指令。					
	转矩指令	向指定的轴输出转矩指令。					
加速/减速曲线		梯形或 S 形					
加速/减速时间	加速 / 减速时间	60000ms 以下					
	S形时间常量	30000ms 以下					
外部 I/O	对于高速伺服通信总线	一个端口用于 MECHATROLINK-II					
	伺服编码器	增量型旋转编码器 绝对旋转编码器 (不限制长度 ABS,支持部分条件)					
	I/O	减速停止输入 (或伺服关闭停止): 1pt 通用输入: 2pt 通用输出: 2pt					
	I/O 的外部电源	24V					
进给速度	快速进给速度	1 ~ 2147483647 [指令单位 / 分钟]					
	插补进给速度	1 ~ 2147483647 [指令单位 / 分钟]					
	超驰	通过系统参数或运动程序将指定的系数应用于速度,来变更操作速度。 0.00~327.67%(设定单位: 0.01%,可以针对每个轴或任务来指定)					
	内部超驰 (单元 Ver.3.1 和 以上版本支持)	可以通过运动程序设定以下指令的进给速度。 指令 应用超驰的速度 MOVE 快速进给速度 DATUM 原点返回进给速度 MOVEI 快速进给速度、外部定位速度 MOVET 快速进给速度 实际的进给速度使用以下公式计算。 实际进给速度 = 轴进给速度 × (轴超驰 + 内部超驰)					
轴控制	齿隙补偿	使用事先注册的值补偿机械齿隙 (驱动轴和被驱动轴之间的机械运转)。 此功能使用伺服驱动器的一个参数。					
	定位区	无论定位是否完成均可使用此功能。 此功能使用伺服驱动器的一个参数。					
	位置回路增益	这是伺服驱动器的位置回路增益。 此功能使用伺服驱动器的一个参数。					
	进给正转增益	MC 单元中创建的指令值乘以此进给正转增益。 此功能使用伺服驱动器的一个参数。					

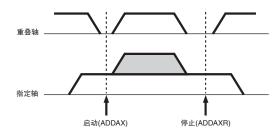
	项目	规格					
程序	任务数	运动任务: 最多8个任务					
	任务中的并联分支	运动任务: 最多8个分支					
	程序编号	每个单元最多 256 个程序 用于程序的程序编号从 0000 ~ 0999。					
	程序编号	0000 ~ 0499: 运动任务的主程序 0500 ~ 0999: 运动任务的子程序					
	程序容量	2 兆字节 每单元最多 8000 块 (按运动程序转换)。					
	块数	每程序 800 块					
	位置数据容量	10240 点 / 单元					
	子程序嵌套	最多5个层次					
	启动	从其他任务的程序启动程序操作					
	开始位置方式指定	运动任务: 初始、继续、下一个					
	减速停止	运动任务: 执行减速停止 (与块无关)					
	块停止	运动任务: 在当前执行的块结束时执行减速停止。					
	单块模式	运动任务: 执行运动程序时一次一个块。					
	断点 (单元 Ver.3.0 和以上 版本支持)	对于任何块均可以使用支持工具设定断点。设定块的断点后,该块执行完后将停止执行程序。					
保存程序数据	MC 单元	闪存备份					
区域(单元 Ver.3	3.0 和以上版本支持)	任何变量(包括反馈当前位置、反馈速度等)位于设定范围之内时区域位开启,位于设定范围之外时区域位 关闭。 最多可设定 32 个区域。					
数据追踪 (单元)	Ver.3.0 和以上版本支持)	同时可追踪最多两个组,每个组中 1 ~ 16 个数据项。 注: 可追踪的项目包括位和数据。可以作为单个项来处理。 当设定 16 个项追踪到 32,768 时仅追踪了一个项时,可收集到 2,048 个数据样本。					
自检功能		看门狗、FLASH-ROM 检查、 RAM 检查等					
错误检测功能		减速停止输入、单元号错误、 CPU 单元错误、软件限制超过错误等					
错误日志功能		可以根据需要,通过 IORD 指令从 CPU 单元读取错误日志。					
报警复位		报警复位					
程序和 CAM 数据本支持)	读保护 (单元 Ver.3.1 和以上版	可以使用 CX-Motion-MCH Ver.2.1 读保护功能 (密码设定)来限制第三方对程序和 CAM 数据的存取。					

功能

● 电子轴 (电子齿轮) (连接)

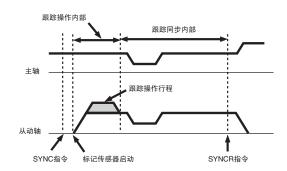
此功能以指定的齿轮比同步主轴。这样,可降低设备维护时对机械 功能和人工操作的要求。

● 电子凸轮 (CAM、CAMBOX)


可以根据凸轮数据中定义的执行时间定位独立的电子凸轮,根据 凸轮表与指定的主轴同步操作同步的电子凸轮。凸轮数据可以包 含所有单元的总计16,000个点,同时可以设定32个凸轮表以支持复 杂操作。

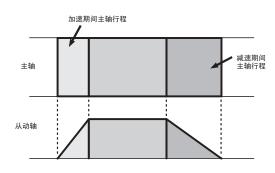
● 虚拟轴

可以设定任何轴来执行想要的操作。将其设置为主轴以进行同步 控制时,可以简化程序的设计和调试,以及同步操作的调整。 同时,在电机操作和工件操作发生滑动时,可以将补偿量 (滑动 量)设定为虚拟轴的目标值,这样可以通过增加轴行程功能轻松执 行补偿操作。


● 添加轴行程 (ADDAX、ADDAXR)

此功能向指定的轴添加了重叠轴操作,可以轻松地执行进给器的 补偿和同步操作。

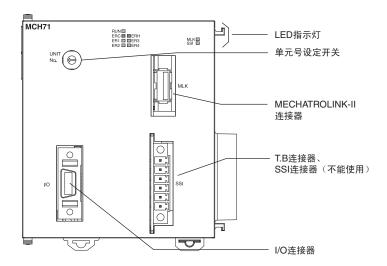
● 跟进同步 (SYNC、SYNCR)


在待机状态下,本功能在标记传感器启动时开始进行跟进操作并 执行与主轴的跟进同步。对于处理工件的应用程序而言是无需停 止生产的理想功能。

● 电子链接(SYNC)

本功能通过同步开始时的加速、同步期间的速度以及同步结束时 的减速来支持指定的同步操作。

这些规格是特定于实际应用操作的,可以轻松实现各种类型的同 步操作。


● 其他操作

大量的指令实现了多样化应用,例如,移动时间(MOVET)、变更 目标(MOVEMODI)、锁定(LATCH:硬件锁定和窗口功能)、贯通 (MOVETRAV)、转矩(TORQUE、TORQUER)、速度(SPEED、 SPEEDR).

指令

分类	名称	指令	功能		
	移动、直线插补、圆弧插补	MOVE, MOVEL, MOVEC	单独移动轴,或使用直线插补或圆弧插补。		
	原点检索	DATUM	根据输入信号找到设备的原点。		
41.78-1	中断缓动	MOVEI	根据输入信号以寸为单元变更位置。		
轴移动	移动时间	MOVET	根据指定的时间定位。		
	贯通	MOVETRAV	执行卷绕操作。		
	独立电子凸轮	CAM	根据表执行凸轮操作。		
	链接	MOVELINK	通过加速和减速与主轴同步。		
	不同电子凸轮	CAMBOX	根据表和主轴执行凸轮操作。		
	电子轴	CONNECT	以固定的速度同步至主轴。		
启动和停止轴	跟进同步	SYNC	跟进并与主轴同步。		
操作	停止同步	SYNCR	停止MOVELINK、CAMBOX、CONNECT和SYNC。		
	添加轴行程	ADDAX, ADDAXR	开始和停止轴之间的行程累积。		
	开始速度、结束速度	SPEED、SPEEDR	输出和停止速度参考。		
	开始转矩、结束转矩	TORQUE, TORQUER	输出和停止转矩参考。		
	变更目标	MOVEMODI	变更正在移动的轴的目标位置。		
	绝对规格、增量规格	ABL, INC	以绝对值或增量值处理坐标。		
	变更参数	PARAM	同时变更参数值。		
	传递模式	PASSMODE	执行指定插补块连接时的操作。		
设置	停止模式	STOPMODE	等待插补块就位。		
X	选项设备坐标系统、选择工件坐标系 统	ORIGIN, WORK	选择设备的坐标系统或工件的坐标系统。		
	变更工件原点偏差	OFFPOS	变更工件原点系统的偏差。		
	LATCH	LATCH	锁定当前位置。		
=	忽略单个块	NSTOP	忽略单块模式。		
	程序启动、程序结束	PROG. END	标记程序的开始或结束。		
	子程序调用、子程序结束	GOSUB、RETURN	调用子程序或结束子程序,并返回调用的源。		
	停顿、等待	DWELL, WAIT	等待指定的时间长度,或等待指定的条件,然后执行下一个块。		
	条件性结束	STOPOP	满足指定的条件后停止正在执行的块。		
	条件分支	IF, ELS, ENDIF	根据条件分支。		
控制	WHILE重复指令	WHILE, WEND	重复执行,直到满足任一指定条件。		
	FOR重复指令	FOR, NEXT	重复执行,直到满足指定的计数(常量、变量或中间量)。		
	并行执行	PARALLEL, JOINT, JWAIT	指定的时间间隔内并行执行。		
	选择执行	SWITCH、CASE、BREAK、 DEFAULT、SEND	根据条件切换并执行指定的部分。		
	无操作单个、无操作多个	NOPS、NOPM	不执行任务操作。(单个或多个执行指令)		
	SUBSTITUTION	=	替换变量的值。		
简单操作	算术运算	+, -,*,/,^	执行加、减、乘、除和幂运算。		
	余数	%	查找除法运算的余数。		
逻辑运算	OR/XOR/AND/NOT	, ., &, !	执行OR、XOR、AND以及NOT逻辑运算。		
	绝对	ABS	查找绝对值。		
	正弦、余弦、反正弦、反余弦	SIN、COS、ASIN、ACOS	查找正弦、余弦、反正弦或反余弦。		
nLák	正切、反正切	TAN、ATAN	查找正切或反正切。		
功能	平方根、指数幂、对数	SQR、EXP、LOG	查找平方根、指数幂、对数。		
	分数	FRAC	查找分数部分。		
	SIGN	SGN	如果大于0为1, 否则为-1。		
2.3. V = 4mir	关闭位,打开位	SET、RESET	关闭或打开指定的位。		
位运算	右移、左移	SFTR、SFTL	指定的位数向右或左移动。		
w 1= 1= 4+	$BCD \rightarrow BIN/BIN \rightarrow BCD$	BIN、BCD	将BCD转换为二进制,或从二进制转换为BCD。		
数据运算	块传送、块清除	XFER、CLEAR	传送或清除数据块。		

外部接口

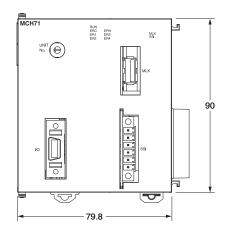
■ LED指示灯

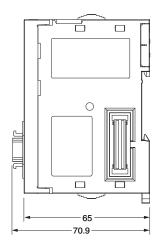
	颜色	状态	内容
RUN	绿色	点亮	运动控制单元正常运行。
(运行)	塚巴 -	不亮	PLC不识别,或MC单元损坏。
ERC	let A.	点亮	MC单元中发生错误。
(MC单元错误)	红色	不亮	MC单元正常运行。
ERH	let A.	点亮	CPU单元中发生错误。
(CPU单元错误)	红色	不亮	CPU单元正常运行。
ER1* (内部错误状态)	共立	点亮	发生内部错误。
	黄色	不亮	MC单元正常运行。
ER2*	# /2	点亮	发生内部错误。
(内部错误状态)	黄色	不亮	MC单元正常运行。
ER3 *	共立	点亮	发生内部错误。
(内部错误状态)	黄色	不亮	MC单元正常运行。
ER4 *	共立	点亮	发生内部错误。
(内部错误状态)	黄色	不亮	MC单元正常运行。
SSI	共立	点亮	未使用。
331	黄色	不亮	未使用。
MLK	共在	点亮	MLK支持运行。
(MECHATROLINK-II)	黄色	不亮	MLK中发生错误。

^{*} ERC或ERH指示灯点亮时,这四个指示灯显示内部错误状态。

CJ1W-MCH71单元Ver.2.1或以上版本支持的功能

单元版本		单元 Ver.2.0	单元 Ver.2.1	单元 Ver.3.0	单元 Ver.3.1			
]部系统软件版本		1.05	1.06	1.07	1.09			
C 单元型号			CJ1W-MCH71					
1能 读取单元版本功能	读取单元版本功能		支持	支持	支持			
自定义 I/O 区域的抗	·展分配	不支持	支持	支持	支持			
数据追踪		不支持	不支持	支持 *1	支持 *1			
调试		不支持	不支持	支持 *1	支持 *1			
区域		不支持	不支持	支持 *1	支持 *1			
签署的主轴 MOVE	INK 指令	不支持	不支持	支持	支持			
位置数据的间接写	\	不支持	不支持	支持	支持			
设置每个任务的并行	宁分支数。	不支持	不支持	支持 *1	支持 *1			
预设当前位置以设3	江原点	不支持	不支持	支持 *1	支持 *1			
程序启动位状态		不支持	不支持	支持	支持			
减速停止信号的伺息	B 未锁定	不支持	不支持	支持 *1	支持 *1			
WAIT 指令的重新技	i行	不支持	不支持	支持	支持			
主电源状态		不支持	不支持	支持	支持			
伺服驱动器状态		不支持	不支持	支持	支持			
CAMBOX 指令精度	·增加	不支持	不支持	支持	支持			
恢复后改进重新启动	th .	-	-	-	支持			
插补加速 / 减速时间]的存储库切换扩展功能	-	_	_	支持			
内部超驰		-	-	-	支持			
连接到 SMARTSTE	EP Junior 伺服驱动器	-	-	-	支持 *2			
改进的备份和恢复3	力能	-	_	_	支持 *2			
程序和 CAM 数据说	保护	-	-	-	支持 *2			


CJ1W-MCH71单元版本和制造日期/批号


			制造日期				
分类	类型	켈号	2004年11月早期	从2004年11月中期	从2005年六月早期	从2007年七月早期	
CPU总线单元	MC单元	CJ1W-MCH71	单元Ver. 2.0	单元Ver. 2.1 (批号: 041117及以后)	单元Ver. 3.0 (批号: 050615及以后)	单元 Ver. 3.1 (批号: 070615 及以后)	

外形尺寸 (单位: mm)

CJ1W-MCH71

相关手册

型号	名称
CJ1W-MCH71	CJIW-MCH71 CS/CJ系列MECHATROLINK-II兼容的运动控制单元用户使用手册
CXONE-AL□□C-V□/ CXONE-AL□□D-V□	CX-Motion-NCH 操作手册
CJ1W-MCH71	CJIW-MCH7I 运动控制单元 (ONNUC W系列) 技术指南

购买欧姆龙产品的客户须知

购买时的注意事项

承蒙对欧姆龙株式会社(以下简称"本公司")产品的一贯厚爱和支持,藉此机会再次深表谢意。

在购买"本公司产品"之际,如果没有其他特别约定,无论客户从哪个经销商购买,都将适用本注意事项中记载的条件。

请在充分了解这些注意事项基础上订购。

1. 定义

本注意事项中的术语定义如下。

- (1) "本公司产品": "本公司"的F系统机器、通用控制器、传感器、电子/结构部件
- (2) "产品目录等":与"本公司产品"有关的欧姆龙综合产品目录、F系统设备综合产品目录、安全组件综合产品目录、电子 机构部件综合产品目录以及其他产品目录、规格书、使用说明书、操作指南等,包括以电子数据方式提供的资料。
- (3)"使用条件等":在"产品目录等"资料中记载的"本公司产品"的使用条件、额定值、性能、动作环境、操作使用方法、使用时的注意事项、禁止事项以及其他事项
- (4) "客户用途":是指"本公司产品"的客户使用本产品的方法,包括将"本公司产品"组装或运用到客户生产的部件、电子电路板、机器、设备或系统等产品中。
- (5) "适用性等":在"客户用途"中"本公司产品"的(a)适用性、(b)动作、(c)不侵害第三方知识产权、(d)法规法令的遵守以及(e)满足各种规格标准

2. 关于记载事项的注意事项

对"产品目录等"中的记载内容,请理解如下要点。

- (1)额定值及性能值是在单项试验中分别在各条件下获得的值,并非保证在各额定值及性能值的综合条件下获得的值。
- (2) 所提供的参考数据仅作为参考,并非保证可在该范围内一直正常动作。
- (3) 应用示例仅作参考,"本公司"就"适用性等"不做保证。
- (4) 如果因改进或本公司原因等,本公司可能会停止"本公司产品"的生产或变更"本公司产品"的规格。

3. 使用时的注意事项

选用及使用本公司产品时请理解如下要点。

- (1) 除了额定值、性能指标外,使用时还必须遵守"使用条件等"。
- (2) 客户必须自己负责确认"适用性等",然后判断是否选用"本公司产品"。"本公司"对"适用性等"不做任何保证。
- (3)对于"本公司产品"在客户的整个系统中的设计用途,必须由客户自己负责对是否已进行了适当配电、安装等进行事先确认。
- (4) 使用"本公司产品"时,客户必须采取如下措施:(i)相对额定值及性能指标,必须在留有余量的前提下使用"本公司产品",并采用冗余设计等安全设计(i)所采用的安全设计必须确保即使"本公司产品"发生故障时也可将"客户用途"中的危险降到最小程度、(ii)构建随时提示使用者危险的完整安全体系、(i)针对"本公司产品"及"客户用途"定期实施各项维护保养。
- (5) "本公司产品"是作为用于一般工业产品的通用产品而设计生产的。因此,不是为如下用途而设计生产的。如果客户将"本公司产品"用于这些用途,"本公司"关于"本公司产品"不做任何保证。
 - (a) 必须具备很高安全性的用途(例:核能控制设备、燃烧设备、航空/宇宙设备、铁路设备、升降设备、娱乐设备、

医疗设备、安全装置、其他可能危及生命及人身安全的用途)

- (b) 必须具备很高可靠性的用途(例:燃气、自来水、电力等供应系统、24小时连续运行系统、结算系统、以及其他处理权利、财产的用途等)
- (c) 具有苛刻条件或严酷环境的用途(例: 安装在室外的设备、会受到化学污染的设备、会受到电磁波影响的设备、会

受到振动或冲击的设备等)

- (d) "产品目录等"资料中未记载的条件或环境下的用途
- (6) 除了不适用于上述 3 (5) (a) 至(d) 中记载的用途外,"本产品目录等资料中记载的产品"也不适用于汽车(含二轮车,以下同)。请勿配置到汽车上使用。关于汽车配置用产品,请咨询本公司销售人员。

4. 保修条件

"本公司产品"的保修条件如下。

- (1) 保修期限 自购买起 年。(但是,"产品目录等"资料中有明确说明时除外。)
- (2) 保修内容 对于发生故障的"本公司产品",由"本公司"判断实施其中任一种保修方式。
 - (a) 在本公司的维修保养服务点对发生故障的"本公司产品"进行免费修理(但是对于电子、结构部件不提供修理服务。)
 - (b) 对发生故障的"本公司产品"免费提供同等数量的替代品
- (3) 非保修对象 当故障原因为如下任何一种情况时, 不提供保修。
 - (a) 将"本公司产品"用于原本设计用途以外的用途
 - (b) 超过"使用条件等"范围的使用
 - (c) 违反本注意事项"3.使用时的注意事项"的使用
 - (d) 因非"本公司"进行的改装、修理导致故障时
 - (e) 因非"本公司"出品的软件导致故障时
 - (f) 按照从"本公司"出货时的科学、技术水平无法预见的原因
 - (g)上述以外,"本公司"或"本公司产品"以外的原因(包括天灾等不可抗力)

5. 责任限度

本注意事项中记载的保修是关于"本公司产品"的全部保证。对于产生的与"本公司产品"有关的损害,"本公司"及"本公司产品"的经销商不负任何责任。 本书的信息已仔细核对并认为是准确的,但是对于文字,印刷和核对错误或疏忽不承担任何责任。

6. 出口管理

将"本公司产品"或技术资料出口或向国外提供时,遵守中国及有关各国关于安全保障进出口管理方面的法律、法规的同时,理解防止扩散大规模杀伤性武器 和防止过度储备常规武器之宗旨的基础上,为不被用于上述用途而请恰当地管理。若客户涉嫌违反上述法律、法规或将"本公司产品"用于上述用途时,有可能无法提供"本公司产品"或技术资料。

2015.9

注:规格如有变更,恕不另行通知。请以最新产品说明书为准。

欧姆龙自动化(中国)有限公司